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We derive a nonsingular, polarization-dependent, 3D impulse response that provides unambiguously the
wave field scattered by a negative-refractive-index layered lens and distributed in its image volume. By
means of a 3D Fourier transform, we introduce the generalized amplitude transfer function in order to
gain a deep insight into the resolution power of the optical element. In the near-field regime, fine details
containing some depth information may be transmitted through the lens. We show that metamaterials
with moderate absorption are appropriate for subwavelength resolution keeping a limited degree of
depth discrimination. © 2010 Optical Society of America
OCIS codes: 100.6640, 160.3918, 240.6680, 310.6628.

1. Introduction

The possibility of recovering subwavelength details
of an object is a subject of growing interest leading
to a profusion of superresolving image-forming tech-
niques. In 2000, Pendry showed that a thin slab of a
medium with negative refractive index (NRI) is cap-
able of generating a exact replica of a plane object,
thus being coined as a perfect lens [1]. This idea
was previously conceived by Veselago, based on sim-
ple ray tracing [2]. For the homogeneous part of the
field, a phase reversal is accomplished within the
NRI medium that compensates the phase gathered
by the wave when traveling away from the source. On
the other hand, the evanescent components of the
wave field carrying those subwavelength features
are amplified in the metamaterial layer in order to
regain their amplitudes at the image plane. To do
it, coupled surface plasmons are excited at the input
and output interfaces of the NRI material slab [3–5].
Unfortunately, absorption inherent in NRI media re-

strains a perfect lens from ideal reconstruction of the
object. Experimental evidence of NRI imaging was
early found in microwaves [6–8]; however, this chal-
lenge remains for higher frequencies.

To derive the limit of resolution, the amplitude
transfer function (ATF) of the system has been pre-
ferably examined, since it directly provides the cutoff
frequency beyond which one cannot find any spectral
component in the reconstructed image. For simpli-
city, the analysis is commonly carried out at the
image plane of line sources leading to a ð1þ 1ÞD pro-
blem [4,5,9,10]. Thus, separating the s-polarized
and p-polarized components of the field, the image-
forming metamaterial layer behaves as a linear and
shift-invariant system having a scalar transfer func-
tion. Silver superlenses and metal-dielectric multi-
layer stacks have also exploited this sort of 1D
spectral analysis [11–13].

In a complementary procedure, what may be
adopted is the Rayleigh criterion of resolution for
which two point sources are just resolved when the
first diffraction minimum of the image of one point
object coincides with the maximum of the adjacent
source [14]. The electric dipole antenna is the most
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well-acceptedmodel for line [15,16] and point sources
[17], leading a complete description of the focal
waves in the image volume. In these cases, however,
the orientation of the electric dipole plays a key role
in the resolution of the imaging system.

Seemingly more appropriate, the point spread
function (PSF) itself may be referred to as a resolu-
tion gauge for our optical element since the full width
of its central peak may be used to estimate the limit
of resolution. This assessment must be taken with
care, since high-frequency components in the phase
of a blurred PSFmight lead to the reproduction of the
object details much finer than the FWHM of the PSF
[13]. In particular, the response of the imaging slab
for each polarization may be developed by means of
the PSF, resulting from the Fourier transform of the
corresponding ATF. Nieto-Vesperinas showed that
the 3D behavior of this impulse response is singular
in loss-free perfect imaging [10]. For band-limited
near-field image formers, however, the out-of-focus
field distribution is regularized at least along finite
distances [18].

Furthermore, in optical microscopy, we generally
have nonplanar objects leading to the analysis of
point sources placed at different distances from the
image-forming device. In this case, we identify dis-
tinct limits of resolution along a direction either
parallel or perpendicular to the lens facets [19]. Spe-
cifically, the transverse resolution has been studied
in detail, but little is said about the axial resolution
of these layered metamaterial lenses.

Let us provide here a complete analysis of the re-
sultant wave field reproduced in the image space of a
near-field metamaterial thin lens, as the field is fully
prescribed in terms of the 3D PSF. The geometric
form of the PSF shall assist us in estimating the
resolution power of the imaging device in three
dimensions.

This paper is organized as follows. In Section 2, the
basic grounds on image formation in NRI thin slabs
are reviewed, adding emphasis to the function of its
impulse response. In Section 3, we introduce the gen-
eralized ATFas the 3D Fourier transform of the PSF.
We identify a closed-surface sheet for the far field
and a hyperboloid sheet for the evanescent wave
component. From the geometry of the generalized
ATF, we interpret the PSF pattern in the image vol-
ume. Moreover, this allows us to provide in Section 4
some relevant aspects on the depth-discrimination
capabilities of the perfect lens. Finally, in Section 5,
the main conclusions are outlined.

2. Image Formation with NRI Slabs

Let us consider a thinmetamaterial slabwith its front
face (input plane) at z ¼ 0 and the output plane at
z ¼ d, thus d denoting the layer width. This optical
element depicted in Fig. 1 will generate an image
in the semispace z ≥ d from a given plane object lying
on z ¼ −z0ðz0 ≥ 0Þ. For simplicity,weassume that both
object and image media are the vacuum. To have a
high-fidelity reproduction at the image plane, the ne-

gative index of refraction n2 of the metamaterial
should coincide in magnitude with that of the object
(and image)medium (n1 ¼ 1).Material losses prevent
from this ideal situation and we therefore assume a
realistic, simplemodel, inwhich permittivity and per-
meability are of the form ϵ2 ¼ μ2 ¼ −1þ iδ. Under
these circumstances, perfect imaging cannot be
achieved, since n2 ¼ −1þ iδ. However, a good replica
may be found at the plane z ¼ z1, where z1 ¼ 2d − z0 if
δ ≪ 1. Moreover, the condition 0 ≤ z0 ≤ d leads to real
images in d ≤ z ≤ 2d.

In order to determine the wave fields in the image
plane, it is customary to separate the s-polarized
waves (Ez ¼ 0) from the p-polarized waves (Hz ¼ 0)
constituting the electromagnetic field emitted by
the source. From the analysis performed by Nieto-
Vesperinas in Ref. [10], one may derive that the per-
fect lens is a linear and 3D shift-invariant system. It
is not difficult to derive more general expressions, in-
cluding material losses. For s-polarized waves, the
transverse electric (TE) field emerging from the
NRI slab satisfies (see Appendix A)

~Eoutð~R; zÞ ¼
ZZ

~Einð~R0;−z0Þh3ð~R − ~R0; z − z1Þd2~R0;

ð1Þ

where ~Einð~R0;−z0Þ is the TE wave field at the object
plane ~R0 ¼ ðx0; y0Þ traveling in the direction of the
input plane. We recognize the 3D function

h3ð~R; zÞ ¼
1

ð2πÞ2
ZZ

Tð~k⊥Þ expði~k⊥~Rþ iβ1zÞd2~k⊥ ð2Þ

as the PSF of the optical system. In Eq. (2), the
transverse wave vector ~k⊥ ¼ ðkx; kyÞ and the layer
transmittance

Tð~k⊥Þ ¼
t12t21 exp½iðβ1 þ β2Þd�
1 − r221 expð2iβ2dÞ

; ð3Þ

follow the Airy formula [20] except for a linear phase
factor. If k0 ¼ 2π=λ0 denotes the wavenumber in
vacuum, the propagation constant reads

Fig. 1. (Color online) Schematic geometry of the planar-layer-
based perfect lens.
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βj ¼ σj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20ϵjμj −~k⊥ ·~k⊥

q
; for j ¼ f1; 2g: ð4Þ

Note that σ1 ¼ 1 for the vacuum and σ2 ¼ −1 for the
NRI material. Also,

rjk ¼ μkβj − μjβk
μkβj þ μjβk

ð5Þ

is the coefficient of reflection for s-polarized waves at
a single interface, and

tjk ¼ rjk þ 1: ð6Þ

For p-polarized waves, it is convenient to derive
first the transverse magnetic (TM) field ~Houtð~R; z ≥
dÞ from that TM field at the object plane
~Hinð~R0;−z0Þ. This yields a convolution similar to
Eq. (1), where its PSF may be written again into
the plane-wave representation [Eq. (2)] by means
of the layer transmittance [Eq. (3)]. It is well-known
that the substitutions ϵj↔μj switches the Airy formu-
la for TM waves and TE waves, respectively [20]. In
our case, however, both material parameters are set
equal, providing a unique PSF.

Disregarding material losses (δ ¼ 0), we have T ¼
1 yielding h3ð~R; 0Þ ¼ δ2ð~RÞ. In this limiting case [1],
the presence of the 2DDirac delta function δ2 leads to
a perfect image

~Eoutð~R; 2d − z0Þ ¼ ~Einð~R0;−z0Þ: ð7Þ
However, h3ð~R; zÞ would exhibit a singular behavior
in z < 0. From theWeyl’s representation of the scalar
Green’s function, one may derive that [10]

h3ð~R; z < 0Þ ¼ 1
2π

∂

∂z

�
expð−ik0rÞ

r

�
; ð8aÞ

h3ð~R; z > 0Þ ¼ −
1
2π

∂

∂z

�
expðik0rÞ

r

�
; ð8bÞ

where the distance from the point of observation,

~r ¼ ~Rþ zẑ; ð9Þ
to the focal point located at the origin is r ¼ j~rj. The
role of δ consists of regularizing the out-of-focus
field distribution given in Eq. (8a), thus providing
a Wiener-like filter T.

The amplitude of the 3D PSF jh3j is depicted in
Fig. 2 for NRI slabs of different widths d. Since
T is radially symmetric, the PSF varies upon the
axial coordinate z and the modulus of the transverse
vector, R,

h3ðR; zÞ ¼
1
2π

Z
∞

0
Tðk⊥ÞJ0ðk⊥RÞ expðiβ1zÞk⊥dk⊥;

ð10Þ

where J0 is a Bessel function of the first kind. In the
numerical simulation, we set a wavelength λ0 ¼
600 nm in vacuum, and losses δ ¼ 0:1 for the meta-
material. Shifting the image plane at z ¼ 0, the exit
surface of the layered lens would be found at z ¼
z0 − d. Bearing in mind that z0 ≥ 0, the meaningful
part of the PSF lies within the range z ≥ −d as con-
sidered in the graphical representation. The 3D am-
plitude distribution of the PSF for a subwavelength
width d shows a distinct behavior in comparison with
those impulse responses for d ≫ λ0. For instance, the
FWHM of the PSF at the image plane Δ⊥ ¼ 73:5 nm
is clearly subwavelength if d ¼ 60 nm; in fact, Δ⊥

would vanish if d were identically zero. Moreover,
the amplitude reaches a maximum value at the cen-
ter point R ¼ 0 on the output plane. The response of
the optical system points to that for near-field ima-
ging. On the contrary, Δ⊥ ¼ 552 nm comes near
the wavelength at d ¼ 1:8 μm. Here, the maximum
amplitude is found approaching the image plane
far from the output plane, existing in a small longi-
tudinal shift of 104 nm. Furthermore, one may deter-
mine a FWHM along the z axis, and in our case we
found Δz ¼ 1:70 μm.

3. The Generalized ATF

It is well-known that a convenient interpretation of
these results is derived by writing explicitly the far-
field term and the evanescent wave term of the wave
field. Here, it will be done for the 3D PSF given in
Eq. (2). Within the spectral domain

~k⊥ ·~k⊥ ¼ k2⊥ ≤ k20; ð11Þ

Fig. 2. (Color online) Absolute value of the PSF jh3j in z ≥ −d at
λ0 ¼ 600 nm for absorbing slabs of δ ¼ 0:1 and different widths: (a)
d ¼ 1:8 μm, (b) d ¼ 600 nm, (c) d ¼ 400 nm, and (d) d ¼ 60 nm.
The plot is normalized to unity at ~r ¼ 0, and contour lines for a
value 1=2 (solid line) are drawn in black. The image plane is
now shifted to z ¼ 0 (vertical red line).
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β1 yields a real value leading to waves that carry en-
ergy to the far field z → ∞. If k⊥ > k0, however, β1 is
purely imaginary, so that this part of the wave field
contributes exclusively to the near field z≳ z0 − d.

The 3D PSF given in Eqs. (2) and (10) is then
written as

h3ð~R; zÞ ¼ hNð~R; zÞ þ hFð~R; zÞ: ð12Þ

The far-field termmay be represented as follows [21]:

hFð~R; zÞ ¼
−ik0
2π

ZZ
að~sÞ expðik0~s~rÞdΩ: ð13Þ

Thus, hF is evaluated from Eq. (2) within the far-field
spectral domain, 0 ≤ θ ≤ π=2, being dΩ ¼ sin θdθdϕ
the element of solid angle in spherical coordinates.
In Eq. (13), the point of observation ~r ¼ ~Rþ zẑ and
the 3D unitary vector ~s ¼~s⊥ þ szẑ is deduced from
the dispersion equation

k0~s ¼~k⊥ þ β1ẑ: ð14Þ

Finally, the angular spectrum

að~sÞ ¼ i
λ0

Tð~sÞsz; ð15Þ

where sz ¼ cos θ. Since k⊥ ¼ k0 sin θ, the transmit-
tance T depends exclusively upon the azimuthal
coordinate θ, and so does a.

The radiation intensity of a point source is in direct
proportion with the squared absolute value of the an-
gular spectrum, jaðθÞj2. The magnitude of the angu-
lar spectrum jaj in the semispace z > 0ðθ < π=2Þ is
plotted in Fig. 3 for superlenses analyzed in Fig. 2
of layer width (a) d ¼ 1:8 μm, (b) d ¼ 600 nm, (c)
d ¼ 400 nm, and (d) d ¼ 60 nm. Material absorption
attenuates the radiation intensity for increasing va-
lues of the slab width. However, the normalized
radiation pattern is quite similar in all cases.

To gain a deep insight into the term hF of the 3D
PSF, let us consider the limiting case δ → 0. In this

case, T ¼ 1 and the transverse distribution of the
PSF is an Airy disk,

hFð~R; 0Þ ¼
J1ðk0RÞ
λ0R

; ð16Þ

where J1 is a Bessel function of the first kind. Along
the axis R ¼ 0, the nonevanescent 3D PSF may be
expressed analytically as

hFð0; zÞ ¼
ð1 − ik0zÞ expðik0zÞ − 1

2πz2 : ð17Þ

This function is well-behaved in z < 0 so that, as ex-
pected, we encounter a singular response in the near-
field term of the PSF. It is important to remark that
jhFj in Eqs. (16) and (17) is maximum at the origin,
whose central lobe has the FWHMs Δ⊥ ¼ 0:705λ0
and Δz ¼ 1:55λ0, respectively. At λ0 ¼ 600 nm, we
have Δ⊥ ¼ 423 nm and Δz ¼ 929 nm. These num-
bers are roughly in agreement with the numerical si-
mulation performed in Fig. 2(a) for d ¼ 1:8 μm,
revealing that hF is the dominant part of the 3D
PSF in this case. This is also true for higher values
of d. Otherwise, the near-field component becomes
significant (see subfigure for d ¼ 600 and 400 nm),
and even taking the control of the amplitude distri-
bution in the image volume for slabs of a subwave-
length width, as shown in Fig. 2(d).

We point out that hF given in Eq. (13) represents a
focused wave with focus at the origin~r ¼ 0 and, as a
consequence, it may follow the standard mathemati-
cal treatment of apertured spherical beams. In the
limiting case δ ¼ 0, it yields an aberration-free focal
wave, since að~sÞ is a real function excepting a con-
stant complex factor; otherwise, monochromatic
aberrations arise [10,22].

Moreover, from Eq. (13), we infer that hF may be
written in terms of a 3D Fourier transform of the
function að~sÞ, which has extent in three dimensions
and is wrapped around the unit semisphere

~s ·~s ¼ 1; ð18Þ

and sz ≥ 0 (see Fig. 4). In McCutchen’s original paper
[23], the function a is coined the “generalized aper-
ture,” describing the patch of solid angle occupied
by the Huygenian source at the aperture plane of
the converging wave. In our case, however, the trans-
mitted amplitude is determined by the function T
rather than the opacity on the exit pupil plane.
Therefore, að~sÞ is simply recalled as the generalized
ATF of the NRI planar lens.

The near-field component of the wave field, hN
might be expressed in the form of Eq. (13) if the angu-
lar coordinate θ is represented in the complex plane.
Setting θ ¼ π=2 − iα and running the real parameter α
from 0 to∞ allows us to consider the normalized wave
vector~s with real transverse component of modulus
s⊥ ¼ cosh α > 1 and the purely imaginary axial
component sz ¼ i sinh α. The dispersion equation is

Fig. 3. (Color online) Absolute value of the angular spectrum in
the semispace z > 0 associated with the 3D PSF for the super-
lenses analyzed in Fig. 2.
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conveniently rewritten as s2⊥ − ðs00zÞ2 ¼ 1, representing
a unit hyperboloid shown in Fig. 4, where s00z ¼ ImðszÞ
is the imaginary part of the on-axis projection of the
wave vector. It is immediately derived that the angu-
lar spectrum að~sÞ wrapped around the hyperboloid
surface constitutes the secondsheet of thegeneralized
ATF associated with evanescent components of the
wave field. Let us conclude as follows: the 3D PSF
h3 is fully computed by means of the 3D Fourier
transform

hFð~rÞ ¼
−ik0
2π

ZZ
að~sÞ expðik0~s~rÞd3~s; ð19Þ

provided that the generalized ATF að~sÞ≡ að~sÞδðs − 1Þ,
δhere is theDiracdelta function,andprovidedthereal
part and the imaginary part of sz are nonnegative.

Previously, we mentioned that the 3D PSF h3 is a
singular function if the metamaterial lens is lossless,
assuming that the absolute value of its negative
refractive index is perfectly matched with that of
the environment medium. This was predicted to be
caused by the near-field term hN . Such a singular be-
havior might be inferred now by considering the
near-field term of the 3D ATF. The function að~sÞmod-
ulates the ATF over the hyperboloidal sheet. If δ ≠ 0,
then að~sÞ is effectively bounded, which leads to a 3D
ATF representing an open surface of a finite area.
Neglecting dissipation, however, a becomes un-
bounded, thus providing in the spectral domain a hy-
perboloid of infinite extent.

As shown in Fig. 5, the modulus jaj is maximum
at θ ¼ 0 for the far-field term, approaching
λ−10 expð−k0δdÞ, and it decreases to zero at θ ¼ π=2.
Within the near-field regime, jaj grows exponentially
at increasing values of α, however, attaining a local
maximum jajmax before it decreases for α → ∞. For

d ¼ 60 nm, the maximum jajmax ¼ 4:77 μm−1 at
αmax ¼ 2:02 rad, which corresponds to a normalized
spatial frequency s⊥ ¼ 3:82 (and sz ¼ i3:69). On the
far-field sheet, the generalized ATF remains com-
paratively low, since jaj ≤ 1:57 μm−1½¼ jaðθ ¼ 0Þj�.
The effective area of the hyperboloidal surface,
where að~sÞ takes significant values, also surpasses in
several units that from the unit semisphere. On the
other hand, for d ¼ 1:8 μm, jajmax ¼ 5:7610−5 μm−1 at
αmax ¼ 0:104 rad, associated with a unit vector of
s⊥ ¼ 1:005 (and sz ¼ i0:104). This is several orders
of magnitude lower than the maximum jaj ¼
0:253 μm−1 given at θ ¼ 0. Clearly, the effective area
of að~sÞ on the hyperboloid is here a fraction of that
from the semisphere.

We conclude that the generalized ATF provides
geometrical and analytical arguments in order to de-
rive critically whether hN represents the dominant
contribution to the 3D PSF. This is of relevance, since
the subwavelength resolution is achieved exclusively
in such a case.

4. Depth of Field

Superresolving layered lensesmadeofmetamaterials
with realistic, moderate absorption are in practice
limited by a subwavelength width. In this sense, a
great effort has been made in order to provide wider
stratified optical elements susceptible to reproduce
subwavelength features [9,24,25]. For microscopy ap-
plications, an extended object should be confined in
the vicinities of the NRI slab in order to give rise to
real images. A quasi-planar source with grooves
and small surface defects contains some depth infor-
mation that might be transmitted through the lens.
This issue is not evident, however, since the decay
of the wave field from the output plane of the lens
leads to inability for producing 3D focusing of energy
in spots smaller than λ0 [18].

As illustration, we show in Fig. 6 the contour plot
of the field intensity in the image space of the near-
field superlens analyzed in Fig. 2(c) as it is produced
by two equienergetic point sources. An incoherent
superposition is assumed to get rid of interference
phenomena. Therefore, the intensity distribution is
proportional to

Fig. 4. (Color online) Spherical and hyperboloidal sheets
constituting the generalized ATF are shown (a) in 3D and (b) on
the meridional plane sx ¼ 0.

Fig. 5. (Color online) Absolute value of the angular spectrum jaj
for the numerical simulations of Fig. 2. The component of the far-
field is represented in the subfigure on the left and the near-field
term of the ATF is shown on the right.
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X
j¼1;2

����h3ð~R − ~R0
j; z − z0jÞ

����
2
: ð20Þ

This is consistent, for instance, with fluorescence mi-
croscopy under the first Born approximation [26].
Nevertheless, the output intensity of any pointlike
source as an electric dipole antenna might be com-
puted straightforwardly by inserting the appropriate
field Ein rather than the Dirac delta function into
Eq. (1). Both points are separated j ~R0

1 −
~R0
2j ¼

120 nm along the transverse direction. We analyze
the case that one of these objects O1 stays closer
to the lens than O2, and therefore its image O0

1 re-
mains in a plane (here, z01 ¼ 0) farther from the lens
back face. In this plane, the presence of the second
image O0

2 is imperceptible in virtue of the evanescent
nature of its wave field. Moving to the geometrical
image plane of O0

2ðz02 ¼ −40 nmÞ, it is clearly de-
tected, however, superposed to the strong back tail
produced by O0

1.

In the case analyzed previously, out-of-focus side-
lobes of the PSF attain a considerable strength lead-
ing to a fast image blurring and loss in resolution
power. Following the half-maximum dashed line of
the image intensity of O0

2 at its geometrical image
plane z02 shown in Fig. 6, it also embodies the diffrac-
tion spot of O0

1 and, as a consequence, one may con-
sider that both image points are not resolved. In
order to increase the transverse resolution of the sys-
tem, we represent in Fig. 7 its response for a more
favorable value of the absorption parameter,
δ ¼ 10−2. Here, the half-maximum closed lines are se-
parately associated with each impulse response of
the two point sources. This superresolution mechan-
ism relies exclusively on a decrement of the FWHM
of the in-focus PSF ofO0

2. In fact, the out-of-focus PSF
of O0

1 has a larger FWHM.
Fromthediscussiongivenabove, onemay infer that

improving the resolution power of near-field NRI
lenses is achieved at the cost of a fast image degrada-
tion in out-of-focus planes. Let us deeply examine this
assessment with the help of Fig. 8. For an extremely
low absorbing layer with parameter δ ¼ 10−3, the low-
est limit of resolution along the transverse direction
(in-focus FWHM) is achieved in comparison with
Figs. 6 and 7. Nevertheless, its back tail at z < 0
spreads much faster, hindering the observation of
other images (O0

2) geometrically reproduced at the
rear. Specifically, at z02, the radius of the out-of-focus
diffraction spot associated with O0

1 goes beyond the
gap j ~R0

1 −
~R0
2j between this image and O0

2. This
behavior becomes more evident as δ decreases and,
more generally, if any physical mechanism improves
the capability of the flat lens in resolving closer
images placed in the same transverse plane.

5. Conclusions

In this paper, we exploit the properties of linearity
and shift invariance featuring planar metamaterial
superlenses. The wave field in the image volume
replicates with unit magnification the 3D source
distribution in front of the NRI slab. Therefore,
the 3D distribution of the impulse response has

Fig. 6. (Color online) Intensity of the wave field in the image vol-
ume of two point sources centered at ~R0

1 ¼ 60x̂ nm ¼ −~R0
2 provided

under different conditions of depth: (left) both sources are located
in the same transverse plane and (right) one source is 40 nm closer
to the lens. The layer width is d ¼ 60 nm and material absorption
is δ ¼ 10−1.

Fig. 7. (Color online) Same as in Fig. 6, considering a medium of
lower loss δ ¼ 10−2.

Fig. 8. (Color online) Same as in Fig. 6, for δ ¼ 10−3.
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translational symmetry not only in a direction paral-
lel to the layer facets, but also along the normal
direction.

In direct analogy with conventional image-forming
systems, we show that when a NRI planar lens pro-
duces an image of a point source, the 3D diffraction
pattern that results is the 3D Fourier transform of a
function that we called here the generalized ATF.
This feasible application of the McCutchen analysis
[23] relies on the relation between the angular spec-
trum of the PSF and the lens transmittance in the
spatial-frequency domain. Thus, the generalized
ATF includes two different sheets: one, having a
spherical shape, contains information of the far field,
whereas the evanescent components of the wave are
associated with the hyperboloidal sheet of the ATF.

Particularly, subwavelength resolution is mostly
determined by the modulation of the generalized
ATF on the hyperboloidal sheet. In connection with
this result, we have understood that increasing
transverse resolution within the near-field regime
may be produced at the cost of loss in depth discrimi-
nation. This feature is in opposition with far-
field imaging, where only annular pupils limiting
the transverse bandwidth of the ATF show an en-
hanced focal depth and, therefore, poor axial
resolution [27,28].

Appendix A: Field Equations

Let us consider the single layer lens made of a left-
handed metamaterial shown in Fig. 1. The TE field
in the object space z < 0 is evaluated as the superpo-
sition of an incident wave field

~Ein ¼
ZZ

~Að~k⊥Þ exp½i~k⊥~Rþ iβ1ðzþ z0Þ�d2~k⊥; ðA1Þ

and the reflected field

~Er ¼
ZZ

Rð~k⊥Þ~Að~k⊥Þ exp½i~k⊥~R − iβ1ðzþ z0Þ�d2~k⊥:

ðA2Þ

The propagation constant β1 is given in Eq. (4). In the
plane-wave representation of the wave field, the spa-
tial spectrum

~Að~k⊥Þ ¼
1

ð2πÞ2
ZZ

~Einð~R0;−z0Þ expð−i~k⊥~R0Þd2~R0

ðA3Þ

represents the 2D Fourier transform of the field pro-
pagating toward the superlens at the object plane
z ¼ −z0. It is evident that Rð~k⊥Þ stands for the coeffi-
cient of reflection for a s-polarized plane wave with
transverse wave vector ~k⊥.

Inside the NRI slab (0 < z < d), the wave field is
again a superposition of the propagating field

~Ets ¼
ZZ

Tsð~k⊥Þ~Að~k⊥Þ exp½i~k⊥~Rþ iβ2ðz − z0Þ�d2~k⊥;

ðA4Þ
and the counterpropagating field

~Ers ¼
ZZ

Rsð~k⊥Þ~Að~k⊥Þ exp½i~k⊥~R − iβ2ðz − z0Þ�d2~k⊥:

ðA5Þ
Finally, the field emerging from the imaging system
in z > d is determined by means of the equation

~Eout ¼
ZZ

Tð~k⊥Þ~Að~k⊥Þ exp½i~k⊥~Rþ iβ1ðz − z1Þ�d2~k⊥:

ðA6Þ
Boundary conditions at the input plane z ¼ 0 and

output plane z ¼ d lead to the evaluation of the coef-
ficients R, Ts,Rs, and T. Thus, imposing continuity of
the field ~E and its normal derivative μ−1∂z~E, we final-
ly obtain [20]

R ¼ expð2iβ1z0Þ
�
r12 þ

t12r21t21 expð2iβ2dÞÞ
1 − r221 expð2iβ2dÞ

�
; ðA7aÞ

Ts ¼ exp½iðβ1 þ β2Þz0�
�

t12
1 − r221 expð2iβ2dÞ

�
; ðA7bÞ

Rs ¼ exp½iðβ1 þ β2Þz0�
�
t12r21 exp½2iβ2ðd − z0Þ�

1 − r221 expð2iβ2dÞ
�
:

ðA7cÞ
The coefficient of transmission T is given in Eq. (3).
Equations (5) and (6) provide the coefficients rjk and
tjk for a single interface, respectively.

The analysis given above is fully consistent with
Maxwell’s equations. Finally, it is straightforward
to verify that inserting Eq. (A3) into Eq. (A6) leads
to the 2D convolution given in Eq. (1).

This research was funded by the Ministerio de
Ciencia e Innovación (MICIIN) under the project
TEC2009-11635.
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